Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38619320

RESUMO

The present study aimed to investigate the effects of deoxynivalenol (DON) stimulation on inflammatory injury and the expression of the glucose transporters sodium-dependent glucose transporter 1 (SGLT1) and glucose transporter protein 2 (GLU2) in porcine small intestinal epithelial cells (IPEC-J2). Additionally, the study aimed to provide initial insights into the connection between the expression of glucose transporters and the inflammatory injury of IPEC-J2 cells. DON concentration and DON treatment time were determined using the CCK­8 assay. Accordingly, 1.0 µg/mL DON and treatment for 24 h were chosen for subsequent experiments. Then IPEC-J2 cells were treated without DON (CON, N = 6) or with 1 µg/mL DON (DON, N = 6). Lactate dehydrogenase (LDH) content, apoptosis rate, and proinflammatory cytokines including interleukin (IL)-1ß, Il-6, and tumor necrosis factor α (TNF-α) were measured. Additionally, the expression of AMP-activated protein kinase α1 (AMPK-α1), the content of glucose, intestinal alkaline phosphatase (AKP), and sodium/potassium-transporting adenosine triphosphatase (Na+/K+-ATPase) activity, and the expression of SGLT1 and GLU2 of IPEC-J2 cells were also analyzed. The results showed that DON exposure significantly increased LDH release and apoptosis rate of IPEC-J2 cells. Stimulation with DON resulted in significant cellular inflammatory damage, as evidenced by a significant increase in proinflammatory cytokines (IL-1ß, IL-6, and TNF-α). Additionally, DON caused damage to the glucose absorption capacity of IPEC-J2 cells, indicated by decreased levels of glucose content, AKP activity, Na+/K+-ATPase activity, AMPK-α1 protein expression, and SGLT1 expression. Correlation analysis revealed that glucose absorption capacity was negatively correlated with cell inflammatory cytokines. Based on the findings of this study, it can be preliminarily concluded that the cell inflammatory damage caused by DON may be associated with decreased glucose absorption.


Glucose is one of the most basic nutrients necessary to sustain animal life and plays a crucial role in animal body composition and energy metabolism. Previous studies suggested a link between glucose absorption and inflammatory injury. In the present study, deoxynivalenol (DON) stimulation caused severe inflammatory injury and reduced the glucose absorption capacity of IPEC-J2 cells. Pearson's correlation analysis revealed a negative correlation between glucose absorption capacity and cell inflammatory cytokines. Ultimately, it can be speculated that the cellular inflammatory response triggered by DON may be related to the altered expression of glucose transporters.


Assuntos
Células Epiteliais , Glucose , Intestino Delgado , Transportador 1 de Glucose-Sódio , Tricotecenos , Animais , Tricotecenos/toxicidade , Suínos , Glucose/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Transportador 1 de Glucose-Sódio/metabolismo , Transportador 1 de Glucose-Sódio/genética , Linhagem Celular , Intestino Delgado/efeitos dos fármacos , Inflamação/induzido quimicamente , Citocinas/metabolismo , Citocinas/genética , Transporte Biológico/efeitos dos fármacos , Transportador de Glucose Tipo 2/metabolismo , Transportador de Glucose Tipo 2/genética , Apoptose/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo
2.
Front Microbiol ; 15: 1329695, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38426056

RESUMO

The formation of soil in karst ecosystem has always been a scientific problem of great concern to human beings. Algae can grow on the exposed and non-nutrition carbonate surface, inducing and accelerating weathering of rock substrates, thus promoting soil formation. Yet the actual contribution of algae to solutional weathering intensity remains unclear. In this study, we performed weathering simulation experiment on two algae species (Klebsormidium dissectum (F.Gay) H.Ettl & G.Gärtner and Chlorella vulgaris Beijerinck), which were screened from carbonated rock surfaces from a typical karst region in South China. The results showed: (1) both algae have solutional weathering effect on carbonate rock, (2) there is no difference of solutional intensity observed, yet the solutional modes are different, suggesting different ecological adaptative strategies, (3) algae on carbonate rocks have higher carbonic anhydrase activity (CAA) and secrete more extracellular polysaccharide (EPS), accelerating rock weathering. (4) The absolute dissolution amount of carbonate rock with algae participation is 3 times of that of without algae. These results indicate the significant impact of terrestrial algae on carbonate rock solutional weathering and provides quantitative evidence that terrestrial algae are pioneer species. It also contributes to our further understanding of soil formation in karst ecosystems in South China.

3.
Sci Total Environ ; 917: 170427, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38281637

RESUMO

Although ecological services have been improved in karst desertification control areas, it is still unclear how population shrinkage affects ecosystem service supply capability through ecological assets. In this study, Theil-Sen median, regression analysis, and variance partitioning were applied to explore the linkages of population change (observed data and shared socioeconomic pathways 1-representative concentration pathways 2.6), ecological asset composition (land use), quality (Normalized difference vegetation index [NDVI] and tree height), and ecosystem services in different periods (population growth and decline periods). The results showed that the population change during the growth period (2000-2038) was dominated by migration patterns. In degraded ecoregions (karst desertification) dominated by population out-migration, the net expansion of forest was 15.88 % during 2000-2020, NDVI and tree height increased by 0.57 % and 54.96 %, and ecosystem service supply capability increased by 2.68 %. In contrast, in non-degraded ecoregions (non-karst and karst non-desertification) with population in-migration, change rates of forest (-5.40 % and - 23.68 %), NDVI (0.49 % and 0.53 %), tree height (-8.35 % and - 31.25 %), and ecosystem service supply capability (2.04 % and 2.18 %) were apparently lower than degraded ecoregions. During the population decline period (2039-2100), although the migration pattern between two regions during the growth period was replaced by a population drop within a single region, the positive correlation between population shrinkage with ecological assets and service supply capability was still followed. Overall, the study found that both ways of population shrinkage that involve out-migration and decline can alleviate the land pressure of degraded ecoregions, which enhances ecosystem service supply capability by regulating ecological assets.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Florestas , Árvores , Crescimento Demográfico , China
4.
Front Microbiol ; 14: 1293353, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38075925

RESUMO

Different utilization patterns can alter the C, N, P cycles and their ecological stoichiometry characteristics in grassland soils. However, the effects of different utilization patterns on soil microbial biomass, microbial entropy and soil-microorganism stoichiometry imbalance of artificial grassland are not clear. So this study was took different utilization patterns of artificial grassland [i.e., grazing grassland (GG), mowing grassland (MG), enclosed grassland (EG)] as the research object to investigate responses of soil microbial biomass, microbial entropy and soil-microorganism stoichiometry imbalance to different utilization patterns in the karst rocky desertification control area. We found that the contents of microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN) were highest in GG, and the content of microbial biomass phosphorus (MBP) was highest in EG. Soil microbial biomass entropy carbon (qMBC) and soil microbial biomass entropy nitrogen (qMBN) of GG and MG were higher than those of EG, but soil microbial biomass entropy phosphorus (qMBP) was opposite. C:N stoichiometry imbalance (C:Nimb) was EG > GG > MG, C:P stoichiometry imbalance (C:Pimb) was EG > MG > GG, N:P stoichiometry imbalance (N:Pimb) was MG > EG > GG. MBN was significantly positive correlated with C:Nimb and C:Pimb, MBC was significantly negative correlated with C:Pimb, MBP was significantly negative correlated with N:Pimb. The redundancy analysis (RDA) results showed that N:Pimb (p = 0.014), C:Nimb (p = 0.014), and C:P in the soil (C:Psoil, p = 0.028) had the most significant effect on microbial entropy. EG had a significant effect on soil microbial biomass and microbial entropy. The results of this study can directly or indirectly reflect the grassland soil quality under different utilization patterns in the karst rocky desertification area, which has a certain reference value for the degraded ecosystem restoration.

5.
Front Plant Sci ; 14: 1239190, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38148857

RESUMO

Plant functional traits serve as a bridge between plants, the environment, and ecosystem function, playing an important role in predicting the changes in ecosystem function that occur during ecological restoration. However, the response of grassland ecosystem function to plant functional traits in the context of ecological restoration in areas of karst desertification remains unclear. Therefore, in this study, we selected five plant functional traits [namely, plant height (H), specific leaf area (SLA), leaf dry matter content (LDMC), root length (RL), and root dry matter content (RDMC)], measured these along with community-weighted mean (CWM) and functional trait diversity, and combined these measures with 10 indexes related to ecosystem function in order to investigate the differences in plant functional traits and ecosystem function, as well as the relationship between plant functional traits and ecosystem functions, under four ecological restoration models [Dactylis glomerata (DG), Lolium perenne (LP), Lolium perenne + Trifolium repens (LT), and natural grassland (NG)]. We found that: 1) the Margalef index and Shannon-Wiener index were significantly lower for plant species in DG and LP than for those in NG (P<0.05), while the Simpson index was significantly higher in the former than in NG (P<0.05); 2) CWMH, CWMLDMC, and CWMRDMC were significantly higher in DG, LP, and LT than in NG, while CWMSLA was significantly lower in the former than in NG (P<0.05). The functional richness index (FRic) was significantly higher in DG and LP than in NG and LT, but the functional dispersion index (FDis) and Rao's quadratic entropy index (RaoQ) were significantly lower in DG and LP than in NG and LT (P<0.05), and there was no significant difference between DG and LP, or between NG and LT (P>0.05); 3) ecosystem function, including ecosystem productivity, carbon storage, water conservation and soil conservation, was highest in LT and lowest in NG; and 4) CWMLDMC (F=56.7, P=0.024), CWMRL (F=28.7, P=0.024), and CWMH (F=4.5, P=0.048) were the main factors affecting ecosystem function. The results showed that the mixed pasture of perennial ryegrass and white clover was most conductive to restoration of ecosystem function. This discovery has important implications for the establishment of vegetation, optimal utilization of resources, and the sustainable development of degraded karst ecosystems.

6.
Front Plant Sci ; 14: 1224691, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37868323

RESUMO

It is of great significance to clarify the ecologically chemical stoichiometric characteristics of plant-litter-soil in vegetation restoration process for elucidating the nutrient cycling law and soil nutrient management of karst ecosystem. The carbon (C), nitrogen (N) and phosphorus (P) contents of leaves, litter and soil and their stoichiometry were determined in loquat (Eribotrya japonica) plantations in a karst plateau canyon after 3, 6, 10 and 15 years of restoration. The homeostasis characteristics of leaf N, P, and N:P with the change in soil nutrients during restoration were revealed. The results showed that leaf C, N, and P contents initially increased and then decreased with increasing years of restoration at the same sampling time. The contents of nutrients in soil and litter varied with increasing restoration years, with the highest values mostly appearing in May and July. This could be due to greater moisture in May and July, which helps with nutrient absorption and transformation. The leaf N:P ratio of loquat with different restoration years was 35.76-47.39, with an average of 40.06. Therefore, loquat leaves may experience P limitation in the growth process. The relationships between N, P and N:P in leaves and soil indexes could be simulated by a homeostasis model. Except for the weak sensitivity of loquat leaf N in 10 years, the other indexes and treatments had a certain homeostasis. Plants maintain homeostasis by regulating physiological responses in vivo in response to soil nutrient changes, indicating that loquat has good adaptability in karst desertification environments, but attention should focus on the management of soil P in the field as part of the vegetation restoration process. Therefore, in future research, we should combine the soil water and fertilizer conditions of different growing seasons in karst rocky desertification areas and provide scientific field management to ensure that the results of rocky desertification management can play a role in rural revitalization.

7.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37812936

RESUMO

The present experiment was conducted to study the effects of dietary epidermal growth factor (EGF) supplementation on the liver antioxidant capacity of piglets with intrauterine growth retardation (IUGR). The present study consists of two experiments. In experiment 1, six normal-birth-weight (NBW) and six IUGR newborn piglets were slaughtered within 2 to 4 h after birth to compare the effects of IUGR on the liver antioxidant capacity of newborn piglets. The results showed that compared with NBW piglets, IUGR piglets had a lower birth weight and liver relative weight; IUGR piglets had a higher serum malondialdehyde (MDA) level, liver MDA level and hydrogen peroxide (H2O2) level, and had a lower liver total antioxidant capacity (T-AOC) level and glutathione peroxidase (GSH-Px) activity; IUGR trended to increase serum alanine aminotransferase activity, aspartate aminotransferase activity, and H2O2 level, and trended to decrease liver total superoxide dismutase activity. In experiment 2, six NBW piglets, and 12 IUGR piglets weaned at 21 d of age were randomly divided into the NC group (NBW piglets fed with basal diet); IC group (IUGR piglets fed with basal diet), and IE group (IUGR piglets fed with basal diet plus 2 mg/kg EGF), and feeding for 14 d. Organ index, serum parameters, liver antioxidant capacity, and liver antioxidant-related genes expression were measured. The results showed that compared to the IC group, dietary EGF supplementation (IE group) significantly reduced serum malondialdehyde level and H2O2 level, and liver protein carbonyl (PC) level and 8-hydroxydeoxyguanosine level of piglets with IUGR; dietary EGF supplementation (IE group) significantly increased serum T-AOC level, liver T-AOC level and GSH-Px activity; dietary supplemented with EGF (IE group) enhanced liver Nrf2, NQO1, HO1, and GPX1 mRNA expression compared to IC group. Pearson's correlation analysis further showed that EGF can alleviate liver oxidative injury caused by IUGR and improve the performance of IUGR piglets. In conclusion, EGF exhibited potent protective effects on IUGR-induced liver oxidative injury, by activating the Nrf2 signaling pathway to mediate the expression of downstream antioxidant enzymes and phase II detoxification enzymes (NQO1 and HO1), thereby alleviating liver oxidative damage and promoting the growth performance of IUGR piglets.


The liver is an important metabolic and secretory organ in vertebrates, which plays an important role in the overall health of animals. Studies have shown that intrauterine growth retardation (IUGR) can cause liver injury in piglets, which is unfavorable to the growth and development of piglets. Epidermal growth factor (EGF) has antioxidant properties, but its effect on liver oxidative damage caused by IUGR remains uncertain. In the present study, we chose newborn piglets with low birth weight as the IUGR models to investigate whether IUGR could cause oxidative damage in the liver. Then, the diet supplemented with EGF was fed to IUGR piglets to study the effects of EGF supplementation on the liver antioxidant function of IUGR-weaned piglets. Results showed that IUGR caused serious damage to the liver of piglets, while dietary EGF supplementation could reverse the oxidative injury induced by IUGR to some extent. Therefore, this study confirmed that EGF has positive effects on the liver health of piglets with IUGR.


Assuntos
Antioxidantes , Doenças dos Suínos , Feminino , Animais , Suínos , Antioxidantes/metabolismo , Fator de Crescimento Epidérmico/farmacologia , Retardo do Crescimento Fetal/tratamento farmacológico , Retardo do Crescimento Fetal/veterinária , Retardo do Crescimento Fetal/metabolismo , Peróxido de Hidrogênio/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fígado/metabolismo , Suplementos Nutricionais/análise , Malondialdeído/metabolismo , Doenças dos Suínos/metabolismo
8.
Front Microbiol ; 14: 1208971, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37720153

RESUMO

Soil bacteria are closely related to soil environmental factors, and their community structure is an important indicator of ecosystem health and sustainability. A large number of artificial grasslands have been established to control rocky desertification in the karst areas of southern China, but the influence of different use patterns on the soil bacterial community in artificial grasslands is not clear. In this study, three grassland use patterns [i.e., grazing (GG), mowing (MG), and enclosure (EG)] were used to investigate the effects of different use patterns on the soil bacterial community in artificial grassland by using 16S rDNA Illumina sequencing and 12 soil environmental indicators. It was found that, compared with EG, GG significantly changed soil pH, increased alkaline hydrolyzable nitrogen (AN) content (P < 0.05), and decreased soil total phosphorus (TP) content (P < 0.05). However, MG significantly decreased the contents of soil organic carbon (SOC), total phosphorus (TP), available nitrogen (AN), ammonium nitrogen (NH4+-N), ß-1,4-glucosidase (BG), and N-acetyl-ß-D-glucamosonidase (NAG) (P < 0.05). The relative abundance of chemoheterotrophy was significantly decreased by GG and MG (P < 0.05). GG significantly increased the relative abundance of Acidobacteria and Gemmatimonadota (P < 0.05) and significantly decreased the relative abundance of Proteobacteria (P < 0.05), but the richness index (Chao 1) and diversity index (Shannon) of the bacterial community in GG, MG, and EG were not significantly different (P > 0.05). The pH (R2 = 0.79, P = 0.029) was the main factor affecting the bacterial community structure. This finding can provide a scientific reference for ecological restoration and sustainable utilization of grasslands in the karst desertification areas.

9.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37410896

RESUMO

The present study aimed to investigate the effects of lipopolysaccharide (LPS) stimulation on oxidative damage, apoptosis, and glutamine (Gln) transporter Alanine-Serine-Cysteine transporter 2 (ASCT2) expression in porcine small intestinal epithelial cells (IPEC-J2), and preliminarily elucidated the relationship between ASCT2 expression level and oxidative damage and apoptosis of IPEC-J2 cells. IPEC-J2 cells were treated without (control group, CON, N = 6) or with 1 µg/mL LPS (LPS group, LPS, N = 6). Cell viability, lactate dehydrogenase (LDH) content, malonaldehyde (MDA), anti-oxidant enzymes (superoxide dismutase [SOD], catalase [CAT], glutathione peroxidase [GSH-Px], and total anti-oxidant capacity [T-AOC]), apoptosis of IPEC-J2 cells, the expression of Caspase3, the expression of ASCT2 mRNA and ASCT2 protein was detected. The results showed that LPS stimulation of IPEC-J2 cells significantly reduced the cell viability, and anti-oxidant enzymes activity (SOD, CAT, and GSH-Px), and significantly increased LDH and MDA release. Flow cytometry results showed that LPS stimulation significantly increased the late apoptosis rate and the total apoptosis rate of IPEC-J2 cells. The immunofluorescence results showed that the fluorescence intensity of LPS stimulated IPEC-J2 cells was significantly enhanced. LPS stimulation significantly decreased the mRNA and protein expression of ASCT2 in IPEC-J2 cells. The correlation analysis showed that ASCT2 expression was negatively correlated with apoptosis, and positively correlated with the anti-oxidant capacity of IPEC-J2 cells. According to the results of this study, it can be preliminarily concluded that LPS promotes the apoptosis and oxidative injury of IPEC-J2 cells by down-regulating the expression of ASCT2.


Glutamine (Gln) is the main energy source for animal eukaryotic cells including intestinal epithelial cells (IECs), which is absorbed mainly mediated by Alanine-Serine-Cysteine transporter 2 (ASCT2). Previous studies have shown that lipopolysaccharide (LPS) stimulation can lead to oxidative damage, increased apoptosis, decreased glutamine absorption, and down-regulated ASCT2 mRNA and protein expression, suggesting that ASCT2 expression is involved in intestinal injury. However, the relationship between ASCT2 expression and cell apoptosis during cell injury has not been discussed in detail. The present study showed that ASCT2 expression was negatively correlated with apoptosis, and positively correlated with the anti-oxidant capacity of porcine small intestinal epithelial cells (IPEC-J2). According to the results of this study, it can be preliminarily concluded that LPS promotes the apoptosis and oxidative injury of IPEC-J2 cells by down-regulating the expression of ASCT2.


Assuntos
Antioxidantes , Lipopolissacarídeos , Suínos , Animais , Antioxidantes/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Cisteína/metabolismo , Glutamina/farmacologia , Glutamina/metabolismo , Linhagem Celular , Estresse Oxidativo , Células Epiteliais/metabolismo , Apoptose , Superóxido Dismutase/metabolismo , RNA Mensageiro/metabolismo
10.
Plants (Basel) ; 12(12)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37376000

RESUMO

Karst desertification control forests are essential for ecosystem multi functionality, but the trade-offs/synergies are unclear for forest ecosystem services. In order to clarify the trade-offs/synergies, this study was conducted on eight forest communities in a karst desertification control area and was based on vegetation surveys and structural and functional monitoring. It analyzes water holding capacity, species diversity, soil conservation, and carbon storage characteristics and their trade-off/synergies. The results indicate the following: (1) The Cladrastis platycarpa + Cotinus coggygria community (H1) had the highest water holding capacity and species diversity with values of 252.21 t·hm-2 and 2.56, respectively. Soil conservation was highest in the Zanthoxylum bungeanum + Glycine max community (H6), with an index value of 1.56. Carbon storage was the greatest in the Tectona grandis community (H8), at 103.93 t·hm-2. The results of these studies have shown that there are significant differences in different types of forest community ecosystem services. (2) Water holding capacity, species diversity, soil conservation, and carbon storage, all have synergistic relationships, suggesting a trend towards synergistic enhancement between the services. (3) The species diversity of the forest ecosystems was shown to be in a trade-off with carbon storage and soil conservation, which suggests that the services are in competition with each other. To further improve the service capacity of forest ecosystems, the trade-offs between the regulation of forest community structure and function and the improvement of services should be optimized.

11.
Sci Total Environ ; 885: 163778, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37149184

RESUMO

Understanding the water use characteristics of plants is crucial for the sustainability of forest water management and vegetation restoration. The vegetation restoration program in the karst desertification areas of southwest China has been implemented for more than two decades, and remarkable achievements have been made in ecological restoration. However, the water use characteristics of revegetation are still poorly understood. We investigated the water uptake patterns and water use efficiency of four woody plants (Juglans regia, Zanthoxylum bungeanum, Eriobotrya japonica, and Lonicera japonica) using stable isotopes (δ2H, δ18O, and δ13C) in combination with the MixSIAR model. The results showed that plants responded to seasonal changes in soil moisture with flexible water uptake patterns. Differences in water use sources among the four plant species during the growing season indicated the occurrence of hydrological niche separation, which is the key to vegetation symbiosis. Throughout the study period, groundwater made the lowest contribution to plants (9.39 %~16.25 %), and fissure soil water made the highest contribution (39.74 %~64.71 %). Among them, shrubs and vines were more dependent on fissure soil water compared to trees (50.52 %~64.71 %). Furthermore, plant foliar δ13C was higher in the dry season than in the rainy season. Evergreen shrubs (-27.94 ‰) exhibited higher water use efficiency compared to other tree species (-30.48 ‰~-29.04 ‰). The water use efficiency of four plants showed seasonal variation and was influenced by the water availability caused by soil moisture. Our study demonstrates that fissure soil water is an important water source for karst desertification revegetation and that seasonal changes in water use characteristics are influenced by species-level water uptake patterns and water use strategies. This study provides a reference for vegetation restoration and water resource management in karst areas.


Assuntos
Conservação dos Recursos Naturais , Água , Estações do Ano , Plantas , Árvores , Solo , China , Ecossistema
12.
Front Microbiol ; 14: 1113707, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36992925

RESUMO

As important components of the biological soil crusts (BSCs) and of the primary stage of crust succession, cyanobacterial communities occupy an important ecological niche and play an important ecological role in desertification areas. In this study, we focused on the karst desertification area, which also belongs to the same category of desertification, and selected three study areas, Guanling-Zhenfeng Huajiang (HJ), Bijie Salaxi (SLX), and Shibing (SB), in the Guizhou Plateau, which represents the overall ecological environment of South China karst, to conduct surveys on the diversity of BSC species and soil properties. Analysis of the cyanobacterial communities and physicochemical properties using the Shannon-Wiener diversity index, principal component analysis, and redundancy analysis revealed that: (1) The three study areas had common cyanobacterial species, with a total of 200 species distributed across 22 genera, 2 classes, 5 orders, and 6 families belonging to the Oscillatoriales (39%), Scytonematales (24.5%), Chroococcales (23%), Nostocales (11.5%), and Rivulariales (2%), (2) The number of species increased with the intensity of karst desertification-while Oscillatoriaceae was the dominant family in HJ and moderate-severe desertification areas, Chroococcaceae and Scytonemataceae were dominant in the mild and potential desertification areas SLX and SB, (3) The Shannon-Wiener diversity indices followed the trend: SLX (3.56) > SB (3.08) > HJ (3.01), indicating that the species were more evenly distributed in mild desertification, (4) In the carbonate background, shrubland harbored the largest number of cyanobacterial species compared to grassland, bare land, and arbor woodland; however, the highest number was documented in arbor woodland in dolomite karst, (5) The soil is weathered limestone or yellow soil in all three areas, with pH ranging from 5.73 to 6.85, fine sand dominated, and soil nutrients increased with the intensity of desertification, and (6) Redundancy analysis showed that organic carbon, soil moisture content (0-5 cm), and total nitrogen substantially influenced cyanobacterial diversity. These results reveal that differences in soil nutrient content play an important role in regulating the cyanobacterial diversity and composition, thereby establishing a foundation for further research and application of soil ecological restoration of cyanobacteria in BSCs of karst desertification areas.

13.
Herit Sci ; 11(1): 30, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36819768

RESUMO

Recently, research on outstanding universal value (OUV) protection and tourism development at World Natural Heritage sites (WNHSs) has attracted scholarly attention. The aesthetic value of natural landscapes is a powerful driving force for tourism development. Using this approach as an entry point to study aesthetic value protection and tourism development will help to relieve the contradiction between protection and development and promote the sustainable utilization of heritage sites. However, no comprehensive literature review has examined research on aesthetic value protection and tourism development at WNHSs. To fill this gap, we used a systematic literature review framework, and bibliometric analyses of 194 journal articles were collected from the Web of Science (WOS) and China National Knowledge Infrastructure (CNKI) databases. The results show the following: (1) the overall fluctuating upward trend in the number of publications indicates that the research in this field is gradually expanding, the regions studied in the literature are mainly focused on China, Italy and Australia, and the research institutions conducting the research are mainly Asian universities. (2) The landmark research achievements mainly focus on theoretical foundation, model construction, monitoring and evaluation, technical measures and other dimensions and the implications for World Heritage karst sites (WHKSs), where theoretical research is the main focus, and that research on monitoring and evaluation, technical measures and model construction is relatively limited. (3) On this basis, 7 key scientific and technological issues are summarized and provide insights into future research directions for the conservation of aesthetic values and tourism development at WHKSs, and future research should strengthen knowledge of natural heritage conservation based on aesthetic value identification and focus on the theoretical basis of the coordination between the conservation of aesthetic value and tourism development at WNHSs. Research should explore the science and technology and measures associated with the coordination between aesthetic value conservation and tourism development, and reveal the mechanisms and paths for coordination between WNHS conservation and tourism development in karst areas.

14.
Plants (Basel) ; 12(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36840118

RESUMO

The structure and stability of grassland ecosystems have a significant impact on biodiversity, material cycling and productivity for ecosystem services. However, the issue of the structure and stability of grassland ecosystems has not been systematically reviewed. Based on the Web of Science (WOS) and China National Knowledge Infrastructure (CNKI) databases, we used the systematic-review method and screened 133 papers to describe and analyze the frontiers of research into the structure and stability of grassland ecosystems. The research results showed that: (1) The number of articles about the structure and stability of grassland ecosystems is gradually increasing, and the research themes are becoming increasingly diverse. (2) There is a high degree of consistency between the study area and the spatial distribution of grassland. (3) Based on the changes in ecosystem patterns and their interrelationships with ecosystem processes, we reviewed the research progress and landmark results on the structure, stability, structure-stability relationship and their influencing factors of grassland ecosystems; among them, the study of structure is the main research focus (51.12%), followed by the study of the influencing factors of structure and stability (37.57%). (4) Key scientific questions on structural optimization, stability enhancement and harmonizing the relationship between structure and stability are explored. (5) Based on the background of karst desertification control (KDC) and its geographical characteristics, three insights are proposed to optimize the spatial allocation, enhance the stability of grassland for rocky desertification control and coordinate the regulation mechanism of grassland structure and stability. This study provided some references for grassland managers and relevant policy makers to optimize the structure and enhance the stability of grassland ecosystems. It also provided important insights to enhance the service capacity of grassland ecosystems in KDC.

15.
Environ Sci Pollut Res Int ; 30(39): 89964-89974, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36171320

RESUMO

Circulation has always been an important research topic in ecological agriculture. The connotation of production and marketing is not only the economic connection, but also the social interaction. Starting from the perspective of transaction costs and social capital, this study attempts to take the Karst rocky desertification management areas as the study area, and by way of the field interviews and literature methods, and through sorting, induction, conceptual cross-comparison, and repeated inferences, to summarize the circumstances and contexts of the five distribution channels of ecological products in the study areas, with the aim of discussing the correlation between transaction costs, social capital, and the market distribution models of ecological products. It is discovered that (1) the intervention of non-economic factors, which play an important role and function in economic activities and can effectively reduce transaction costs and promote the circulation of social capital, forming a closer cooperation relationship, is the key to the production and marketing of ecological products. (2) It innovatively proposes the bonding, bridging, and linking social capital types to explain the social relationship between the parties under the distribution channel of ecological products, which are divided into, based on the closeness from low to high, the bonding, linking, and bridging types. (3) In product distribution, the higher the social capital circulation is, the more transparent the information exchange of market distribution channels would be, and the lower the transaction costs for both parties would become. The study attempts to provide theoretical support for the construction of the full industrial chain of ecological products for Karst rocky desertification management in Southern China.


Assuntos
Ecossistema , Capital Social , Conservação dos Recursos Naturais , Custos e Análise de Custo , Agricultura , China
16.
Artigo em Inglês | MEDLINE | ID: mdl-36497901

RESUMO

Exploring the hydrogeochemistry of cave drip water and its response to precipitation events in karst rocky desertification regions is of great significance to the paleoenvironment reconstruction of the karst desertification process using speleothem. We selected three perennial drip sites in the Shijiangjun Cave, located in Guizhou Province, Southwest China, and carried out high-frequency monitoring and sampling during two rainfalls from 22 to 25 May 2016. The major hydrogeochemical parameters of drip water and their relationships with karst desertification were analyzed. The results show that the hydrogeochemistry of the drip water in the Shijiangjun Cave, characterized by HCO3-Ca·Mg, was dominated by the dissolution of calcareous dolomite. The three drip sites were classified into the delayed response type (W1) and the rapid response type (W2 and W3) based on the response speed of the drip water indicators to precipitation, which were highly influenced by the piston effect and precipitation dilution, respectively. Furthermore, the response sensitivity of the drip water indicators to precipitation was constrained by the desertification degree in the rainy season, specifically, the faster response appeared in the higher desertification degree area. It is essential to select appropriate drip sites and establish an applicable indicator system for the evolutional history reconstruction of karst desertification using speleothems.


Assuntos
Conservação dos Recursos Naturais , Monitoramento Ambiental , Monitoramento Ambiental/métodos , Chuva , Água , Estações do Ano , China , Ecossistema
17.
Front Immunol ; 13: 1042778, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36505434

RESUMO

Weaning is considered to be one of the most critical periods in pig production, which is related to the economic benefits of pig farms. However, in actual production, many piglets are often subjected to weaning stress due to the sudden separation from the sow, the changes in diet and living environment, and other social challenges. Weaning stress often causes changes in the morphology and function of the small intestine of piglets, disrupts digestion and absorption capacity, destroys intestinal barrier function, and ultimately leads to reduced feed intake, increased diarrhea rate, and growth retardation. Therefore, correctly understanding the effects of weaning stress on intestinal health have important guiding significance for nutritional regulation of intestinal injury caused by weaning stress. In this review, we mainly reviewed the effects of weaning stress on the intestinal health of piglets, from the aspects of intestinal development, and intestinal barrier function, thereby providing a theoretical basis for nutritional strategies to alleviate weaning stress in mammals in future studies.


Assuntos
Ingestão de Alimentos , Intestinos , Animais , Suínos , Feminino , Desmame , Diarreia/veterinária , Fazendas , Mamíferos
18.
Artigo em Inglês | MEDLINE | ID: mdl-36554755

RESUMO

In the face of increasing development pressure, how to fulfill the obligations under the World Cultural and Natural Heritage Convention and maintain the integrity of the Natural World Heritage Site (NWHS) is a major problem to be solved at present. Agroforestry (AF) development in the buffer zone maintains the integrity of NWHS and promotes sustainable ecological and economic development in the buffer zone. Still, few studies on the knowledge system of integrity protection of NWHS and AF development in the buffer zone research have been conducted. To fill this gap, this study conducts a systematic literature review based on 128 related articles retrieved from the Web of Science (WoS) database and the China National Knowledge Infrastructure (CNKI) database. Firstly, quantitative studies were conducted to analyze the annual numbers, content and study regions of the published literature. Secondly, the main research progress and achievements of integrity protection of WNHS and AF development in the buffer zone are classified and summarized. On this basis, this paper proposed key scientific issues that remain to be addressed in future, as well as exploring the implications for the World Heritage (WH) karst. This study is a scientific reference for the balanced development of NWHS integrity protection and AF in the buffer zone.


Assuntos
Conservação dos Recursos Naturais , Conhecimento , China , Bases de Dados Factuais
19.
Animals (Basel) ; 12(17)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36077965

RESUMO

EGF plays an important role in the intestinal repair and nutrients transport of animals. However, the effect of EGF on the intestinal health of piglets with IUGR has not been reported. Thus, the present study was performed to investigate the effects of EGF on the intestinal morphology, glucose absorption, antioxidant capacity, and barrier function of piglets with IUGR. A total of 6 NBW piglets and 12 IUGR piglets were randomly divided into three treatments: NC group (NBW piglets fed with basal diet, n = 6), IC group (IUGR piglets fed with basal diet, n = 6), and IE group (IUGR piglets fed with basal diet supplemented with 2 mg/kg EGF, n = 6). Growth performance, serum biochemical profile, jejunum histomorphology, jejunum glucose absorption and antioxidant capacity, and jejunal barrier function were measured. The results showed that EGF supplementation significantly increased the final body weight (FBW), average daily gain (ADG), and average daily feed intake (ADFI) of piglets with IUGR; EGF supplementation significantly increased the total protein (TP), glucose (GLU), and immunoglobulin G (IgG) levels compared with the IUGR piglets in the IC group; EGF administration effectively exhibited an increased jejunum villus height (VH) and the villus-height-to-crypt-depth ratio (V/C) of IUGR piglets compared with the IC group; EGF supplementation significantly increased sodium/potassium-transporting adenosine triphosphatase (Na+/K+-ATPase) activity, intestinal alkaline phosphatase (AKP) activity, glucose transporter sodium/glucose cotransporter 1 (SGLT1), glucose transporter 2 (GLUT2), and AMP-activated protein kinase α1 (AMPK-α1) mRNA expressions in the jejunum of IUGR piglets compared with the IC group; EGF supplementation exhibited increased superoxide dismutase (SOD) activity and total antioxidant capacity (T-AOC) levels, tended to increase glutathione peroxidase (GSH-Px) and catalase (CAT) activities, and tended to decrease the malondialdehyde (MDA) level in the jejunum of IUGR piglets compared with the IC group; EGF supplementation significantly increased ZO-1, Claudin-1, Occludin, and MUC2 mRNA expressions and improved secreted immunoglobulin A (sIgA) secretion in the jejunum of IUGR piglets compared with the IC group and tended to decrease the interleukin 1ß (IL-1ß), IL-6, and tumor necrosis factor α (TNF-α) levels in the jejunum of IUGR piglets compared with the IC group. Pearson's correlation analysis further showed that EGF can promote intestinal development and nutrient absorption by promoting intestinal barrier function, thus improving the growth performance of IUGR piglets.

20.
Sci Total Environ ; 852: 158538, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36067859

RESUMO

Agroforestry (AF) has become an important strategy in reconciling the contradictory requirements of environmental protection and economic development in ecologically fragile areas, and whose multiple ecosystem services provide effective ways to promote the restoration of degraded ecosystems in the region. However, agroforestry ecosystem services (AFES) are usually constrained by their generative elements (vulnerability, structure, function, and ecological assets) and service management-both crucial for informed decision-making which enhances AFES supply capacity and AF sustainable management. Karst rocky desertification (KRD) is a typical case in an ecologically fragile area, and within the KRD region greatly relevant for promoting AFES as a strategy for restoring degraded regional ecosystems and for achieving sustainable development goals. In this study, a total of 164 publications related to AFES that met a set of inclusion criteria were obtained through the Scopus database using the literature review method of searching, appraisal, synthesis, and analysis. From the systematic literature review results, (i) we found that the number of relevant publications generally exhibited a year-on-year growth trend, with AFES generation elements being the most common topic (68.11 % of publications), and service management research being the second most common (31.89 % of publications); (ii) we summarised the main progress and landmark results of AFES generation elements and service management research and explored the relevant key scientific questions; and (iii) the above information enlightened the key improvement areas of KRD control ecosystem within three aspects: natural environment, agricultural development, and human-environment relationship. This study provides agroforestry practitioners and relevant decision-makers with information for improving and managing the supply capacity of AFES, and also presents important insights on the KRD control ecosystem to land degradation restoration technicians.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , China , Conservação dos Recursos Naturais/métodos , Desenvolvimento Econômico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA